In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO₃ biomineral in crayfish gastroliths.

نویسندگان

  • Anat Akiva-Tal
  • Shifi Kababya
  • Yael S Balazs
  • Lilah Glazer
  • Amir Berman
  • Amir Sagi
  • Asher Schmidt
چکیده

Bioavailable calcium is maintained by some crustaceans, in particular freshwater crayfish, by stabilizing amorphous calcium carbonate (ACC) within reservoir organs--gastroliths, readily providing the Ca(2+) needed to build a new exoskeleton. Despite the key scientific and biomedical importance of the in situ molecular-level picture of biogenic ACC and its stabilization in a bioavailable form, its description has eluded efforts to date. Herein, using multinuclear NMR, we accomplish in situ molecular-level characterization of ACC within intact gastroliths of the crayfish Cherax quadricarinatus. In addition to the known CaCO(3), chitin scaffold and inorganic phosphate (Pi), we identify within the gastrolith two primary metabolites, citrate and phosphoenolpyruvate (PEP) and quantify their abundance by applying solution NMR techniques to the gastrolith "soluble matrix." The long-standing question on the physico-chemical state of ACC stabilizing, P-bearing moieties within the gastrolith is answered directly by the application of solid state rotational-echo double-resonance (REDOR) and transferred-echo double-resonance (TEDOR) NMR to the intact gastroliths: Pi and PEP are found molecularly dispersed throughout the ACC as a solid solution. Citrate carboxylates are found < 5 Å from a phosphate (intermolecular CP distance), an interaction that must be mediated by Ca(2+). The high abundance and extensive interactions of these molecules with the ACC matrix identify them as the central constituents stabilizing the bioavailable form of calcium. This study further emphasizes that it is imperative to characterize the intact biogenic CaCO(3). Solid state NMR spectroscopy is shown to be a robust and accessible means of determining composition, internal structure, and molecular functionality in situ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium Deposits in the Crayfish, Cherax quadricarinatus: Microstructure Versus Elemental Distribution.

The crayfish Cherax quadricarinatus stores calcium ions, easily mobilizable after molting, for calcifying parts of the new exoskeleton. They are chiefly stored as amorphous calcium carbonate (ACC) during each premolt in a pair of gastroliths synthesized in the stomach wall. How calcium carbonate is stabilized in the amorphous state in such a biocomposite remains speculative. The knowledge of th...

متن کامل

Comparative Ultrastructure and Carbohydrate Composition of Gastroliths from Astacidae, Cambaridae and Parastacidae Freshwater Crayfish (Crustacea, Decapoda)

Crustaceans have to cyclically replace their rigid exoskeleton in order to grow. Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish) elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we stud...

متن کامل

A protein involved in the assembly of an extracellular calcium storage matrix.

Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadri...

متن کامل

A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix.

Despite the proclamation of Lowenstam and Weiner that crustaceans are the "champions of mineral mobilization and deposition of the animal kingdom," relatively few proteins from the two main calcification sites in these animals, i.e., the exoskeleton and the transient calcium storage organs, have been identified, sequenced, and their roles elucidated. Here, a 65-kDa protein (GAP 65) from the gas...

متن کامل

Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith.

Gastroliths are transient extracellular calcium deposits formed by the crayfish Cherax quadricarinatus von Martens on both sides of the stomach wall during pre-molt. Gastroliths are made of a rigid chitinous organic matrix, constructed as sclerotized chitin-protein microfibrils within which calcium carbonate is deposited. Although gastroliths share many characteristics with the exoskeleton, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 36  شماره 

صفحات  -

تاریخ انتشار 2011